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Abstract. We report an experimental method for inhibiting vortex shedding generated by the Bénard-
von Kármán instability (BvK) in the wake of a cylinder. We show that monitoring the pressure at the
front stagnation point of a circular cylinder can completely suppress the Bénard-von Kármán instability
for Reynolds numbers in the range 48.5 < Re < 150. We then study some properties of the BvK instability
in the presence of suction at the front stagnation point and mention that this method can be used to
generate well-controlled localized vortical structures in the form of vortex pairs.

PACS. 47.20.-k Hydrodynamic stability – 47.27.Rc Turbulence control – 47.27.Vf Wakes

1 Introduction

It has been known since the early paper of Prandtl on
boundary layers [1] that a small amount of suction on
one side of a cylinder in a high Reynolds number flow, is
enough to prevent the separation of the boundary layer
on that side.

Almost a century later, the control of boundary layers
or more generally of the hydrodynamical instabilities of
the near wake past bluff bodies in high Reynolds number
flows, is still a matter of central interest in fluid dynamics.
The motivation is primarily to achieve drag reduction but
also to prevent any structural damage of a bluff body re-
sulting from a resonant coupling with the hydrodynamic
instability in its near wake.

A phenomenon which generates strong transverse force
fluctuations, and thus may be involved in such a cou-
pling, is vortex shedding from bluff bodies. A widely stud-
ied canonical example is the Bénard-von Kármán (BvK)
instability generated in the wake of a circular cylinder
of diameter d and length L, such that the aspect ra-
tio, Γ = L/d � 1 . At Reynolds number of order one
(Re = U0d/ν, where U0 is the upstream velocity and ν
is the kinematic viscosity of the fluid), a reversed flow
first occurs near the rear stagnation point of the cylinder
and leads to the formation of two attached eddies in the
near wake of the cylinder, thus breaking the upstream-
downstream symmetry. The two attached eddies grow in
size as the Reynolds number is increased, and at a critical
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Reynolds number, Rec ∼ 48.5, the flow ceases to be sym-
metric about the centerline and stationary; it settles into
a time periodic regime in which vortices are shed alterna-
tively from the two sides of the cylinder, so giving the von
Kármán vortex street [2]. Vortex shedding corresponds to
a limit-cycle oscillation of the near wake described by a
Stuart-Landau equation [3].

Controlling the wake of a cylinder by inhibiting the
BvK instability has motivated a lot of studies. Two forms
of wake control are currently proposed in the literature,
called respectively active or passive methods. In the group
of passive methods, inserting a splitter plate in the near
wake of a cylinder [4], performing steady or periodic suc-
tion from the rear re-circulation zone [5], heating the cylin-
der, locating a secondary cylinder in the near wake, im-
posing large-amplitude transverse oscillations or angular
rotation to the cylinder at an appropriate frequency, can
at least modify or suppress vortex shedding [6–8]. In the
group of active methods, an electronic feedback is achieved
with the aid of a pressure sensor, by applying for instance
acoustic forcing [9,10] or using a pair of blowing-suction
actuators near the re-circulation region [9].

Most of the above methods, active or passive, have
tried to control the BvK instability by applying a local
perturbation directly in the near wake of the cylinder.
This is a quite natural idea if we have in mind the meth-
ods used to control boundary layer separation by trying to
inhibit adverse pressure gradients along the trailing edge
of solid bodies in a flow field. Another concept that may
be invoked to justify a perturbation directly applied to
the wake is the one of absolute vs. convective instabil-
ity [11]; by perturbing the wake, for instance using a blow-
ing actuator at the rear stagnation point, one may hope
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to transform an absolute instability of the near wake into
a convective one.

We propose a method of control which differs from
the ones mentioned above. We have tried to achieve a
global modification of the flow field around the cylinder
by monitoring the pressure distribution. In general, the
average pressure in the near wake is smaller than the one
near the front stagnation point. This important difference
with the potential flow solution, is due to boundary layer
separation that generates a vorticity filled wake in which
the pressure is low. The general idea is thus to compen-
sate this pressure difference by decreasing the pressure at
the front stagnation point, say ro. This is achieved by a
suction which decreases the pressure p(ro, t). The front
stagnation point is thus suppressed and bifurcates into a
pair of stagnation points located symmetrically with re-
spect to the flow centerline, at angles ±θo, and shifted
downstream as the amount of suction is increased. We
have shown using potential flow theory, that this modifies
the pressure distribution around the whole cylinder such
that the streamlines shrink in the wake of the cylinder.
This externally imposed asymmetry is thus likely to com-
pensate the one which results from boundary layer sep-
aration and consequently to delay the onset of the BvK
instability.

This paper is organized as follows: in the next section,
we describe the experimental apparatus and the measure-
ment techniques. We then show that a suction at the front
stagnation point of the cylinder does inhibit the BvK in-
stability in Section 3. Section 4 is devoted to the study
of the properties of the BvK instability in the presence
of suction. In Section 5, we show that a simple model in
the framework of potential flow theory gives insights in
the inhibition mechanism. In the conclusion, we mention
the use of the present technique to the generation of well-
controlled vortical localized structures.

2 Experimental facilities and instrumentation

The experiments were conducted in a low velocity air wind
tunnel at ENS-Lyon (Fig. 1). This open wind tunnel has
a laminarisation chamber built of 4 metallic honey comb
panels placed between the test section and the fans. A
fine metallic grid (step 0.5 mm) is used to reduce trans-
verse velocity fluctuations. The turbulence level, defined
as the ratio of the rms axial velocity to the average axial
velocity, does not exceeds 0.3% with accuracy better than
±1% on mean velocity. Indeed, a low fluctuation level is
necessary to prevent a spurious amplification of the BvK
instability due to the presence of uncontrolled free stream
fluctuations.

At the center of the test section of 50 × 50 cm2 and
2.5 m long, a vertical circular cylinder is mounted. The
circular cylinder consists in brass tubes of external di-
ameter d = 3 mm (respectively 5 mm) and length L
with a constant aspect ratio Γ = L/d = 56. The vor-
tex shedding process being extremely sensitive to bound-
ary conditions, circular end-plates of diameter dp (ratio
dp/d = 12), are mounted to limit the span L, more than

Fig. 1. Experimental set up. A vertical circular cylinder of
diameter d and length L is mounted in the test section of the
wind tunnel. (1) Pressure sensor. (2) Circular end-plate of di-
ameter dp. (3) Small hole distribution: hole diameter dε, step
between holes ζ. (4) Control valve and flow meter.

50 cylinder diameters apart to avoid the presence of other
shedding modes [12]. The Reynolds number is in the range
50 < Re < 150.

Local wake-velocity measurements are performed with
a calibrated TSI hot film probe TSI-1240-20, 51 µm in
diameter and 1 mm long sensitive length. The hot film is
located at x/d = 37.8 from the rear end of the cylinder in
the case of d = 3 mm, and at x/d = 24.5 in the case of
d = 5 mm. It is operated with a TSI 1750 constant temper-
ature anemometer. The signal delivered by the anemome-
ter is maximum in amplitude when the probe is located
slightly off the center of the wake at y/d = 1.75 (Fig. 1).

In order to decrease the pressure at the stagnation
point, p(ro, t), we have drilled a very small hole of di-
ameter dε (dε � d) to connect the surface of the tube
to its inner section where an internal pressure level pi(t)
is imposed through an external vacuum pump (Fig. 1).
To get an overall effect along the cylinder span L, we
have drilled a uniform distribution of small holes along a
straight line at the cylinder surface. To find an optimum
step size between the holes, ζ, we performed experiments
with one hole and looked at its maximum influence over
the cylinder span with different combinations of the pa-
rameters: dε, d, p(ro, t) and Uo. We have chosen a discrete
hole distribution instead of a continuous slit because pres-
sure modulation would not have been possible due to the
limited power of the vacuum network at our disposal. We
have studied three configurations differing only in the ex-
ternal diameter d of the circular cylinder and in the hole
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Fig. 2. (a) Time recording of the velocity fluctuations due to
periodic vortex shedding in the free wake (thin line). Suppres-
sion of the oscillation when the pressure pi is decreased inside
the cylinder (thick line). (b) Power spectra corresponding to
the time recordings of Figure 2a. d = 5 mm, dε = 0.5 mm,
Re = 116.

diameter dε: d = 3 mm, dε = 0.3 mm, d = 3 mm,
dε = 0.5 mm, d = 5 mm, dε = 0.5 mm. In all cases,
ζ/d = 3.4.

The applied pressure pi, relative to the atmospheric
pressure, is measured with a precision temperature-
compensated differential pressure transducer Sensym
SCX01-DN connected at one end of the cylindrical tube
(operating range 0–1 psi, precision ±0.2% of full span).
Pressure level is controlled with an electronically com-
manded valve which allows to apply pressure steps smaller
than the precision of the pressure transducer. Alterna-
tively, rapid pressure changes can be performed by means
of a solenoid on-off valve. The total flow rate Q is mea-
sured with calibrated flow meters Brooks R215C and
R615B. Velocity as well as pressure signals are simultane-
ously digitized by a 16 bit 50.2 kHz HP3565 input module.

3 The inhibition of the Bénard-von Kármán
instability

We start with the free wake at Re = 116. A time recording
of velocity fluctuations is displayed in Figure 2a showing
the oscillations associated to the periodic vortex shedding.
The pressure pi inside the cylinder is then decreased in a
quasistatic way, i.e. by steps of order δpi ∼ 4 pa, with a
waiting time 30 seconds between each step. Below a crit-
ical pressure pic, the oscillation disappears and the rms
velocity signal falls down to the background velocity fluc-
tuation level of the mean stream (Fig. 2a), indicating that
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Fig. 3. Velocity fluctuations in the wake of the cylinder as a
function of the overall flow rate Q. u/uf versus Q/(UodL) for:
Re = 95.5, d = 3 mm, dε = 0.5 mm (4), Re = 95.9, d = 5 mm,
dε = 0.5 mm (◦) and Re = 94.5, d = 3 mm, dε = 0.3 mm (�).

vortex shedding has been suppressed. We emphasize that
vortex shedding suppression has been confirmed through
velocity measurements performed on the whole transverse
section of the flow. Thus, our observation does not result
from a simple wake deflection. We also note from Fig-
ure 2a that the mean velocity measured in the wake is not
significantly decreased by the applied suction.

In the whole range of Reynolds numbers investigated
here (50 < Re < 150), we have shown that the suppression
of vortex shedding, i.e. the control of the BvK instability,
is achieved by decreasing the value of the internal pressure
pi below a critical one pic which corresponds to a critical
flow rate Qc entering the cylinder.

The rms values of velocity fluctuations as a function
of pi, u(pi), normalized by the free wake velocity, uf , as
a function of the flow rate, Q, normalized by UodL, are
displayed in Figure 3. For three d/dε ratios, one observes
a transition at which the velocity fluctuations fall into the
background fluctuation level, revealing that vortex sup-
pression occurs. Although the transition is rather abrupt,
no hysteresis is detectable. The method to determine crit-
ical values for pressure, pic, and critical total flow rate,
Qc, will be discussed later.

Different regimes are identified from the behavior of
rms velocity fluctuations as the pressure, pi, is decreased
or the flow rate, Q, increased (Fig. 4b). First there is a
nearly monotonous decrease of the amplitude of the ve-
locity fluctuations at a constant frequency ωn; then a shift
to a lower frequency mode ωs but with an increase of the
fluctuation amplitude. ωs also remains constant as Q is
increased further until the suppression of the vortex shed-
ding is observed (Fig. 4). For 100 < Re < 150, the reduced
shift (ωn−ωs)/ωn was found to be nearly constant roughly
equal to 0.34.

Before studying the BvK instability in the presence of
suction, let us consider the effect of only one suction hole
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Fig. 4. (a) Power spectral density of wake velocity showing
natural ωn and slower ωs modes for d = 5, dε = 0.5 mm,
Re = 109.4. (b) Velocity fluctuations u/uf versus flow rate
Q/UodL, and the regions where ωn, ωs exist.

drilled in the cylinder, in order to determine the span-
wise scale on which vortex shedding suppression is found
around the sink point ro. We measure the velocity field
around ro scanning a whole downstream transverse plane
(z–y) parallel to the cylinder axis. Figure 5 shows the
contours and surface plots of the normalized rms veloc-
ity, u(y, z) at x/d = 11.3 downstream from the cylinder
rear end, for Re = 82.5, d = 3.5 mm and dε = 0.5 mm.
Vortex suppression takes places along the span around ro

giving a spatial scale of |z/d| ∼ 4 for d = 3 mm (respec-
tively 5 mm). This determined our choice for the ζ/d ratio.
Note that a decrease of ζ/d will require smaller values of
the depression in order to obtain the same effect along the
span. However the total section associated to N holes dis-
tribution

∑N
i=1(πd2

ε/4) will require a net increase in terms
of the flow rate because the BvK instability inhibition is
caused by the strength of each sink, its local flow rate q,
where Q = Nq.

4 The Bénard-von Kármán instability
in the presence of suction

The critical value of the internal pressure, pic as well as
the critical flow rate Qc at which the suppression of vortex
shedding occurs, depend on the upstream velocity Uo. In
this section we determine this experimental relationship.

Critical pressure can be obtained from the quasistatic
curves. But it is known to be more accurate to obtain
pic from an extrapolation of the linear fit of the relation
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Fig. 5. The influence of a single sink. Surface plot and contours
for the rms velocity profiles downstream around ro versus x/d
and y/d at Re = 82.5, Q = 25.6 cm3/s. (a) Iso-contours of
u/U f for d = 3, dε = 0.5 mm. (b) The corresponding surface
plot of u/U f for d = 3, dε = 0.5. Note that U f is the free mean
velocity.

giving the temporal growth rate, σr, of the natural shed-
ding mode versus the internal pressure, pi. σr is found
from the initial exponential growth of the velocity signal
at the first stage of the instability growth. We operate
as follows: for a fixed value of Re, Re > Rec, we apply
an internal pressure that suppresses the instability, p1

i , so
the pressure is below the critical one, p1

i < pic. Then, we
increase pi impulsively with a control valve to reach a su-
percritical level, p2

i > pic. The time scale, τ , on which the
pressure is varied from p1

i → p2
i , must be smaller than the

inverse of the instability growth rate, i.e., τ � σ−1
r , oth-

erwise a phenomenon of amplitude modulation of the nat-
ural mode takes place due to a coupling with the forcing
pressure. Figure 6 shows a typical evolution of the insta-
bility when we perform a rapid transition from p1

i → p2
i

(Re = 53.6). The time series of the normalized velocity
fluctuation, u(t)/usat (at x/d = 37.8 and y/d = 1.75) dis-
plays an exponential growth followed by a nonlinear sat-
uration. The forcing pressure signal pi(t) displays a time
lag with respect to the velocity signal because data acqui-
sition is performed simultaneously (synchronized) and the
velocity is measured downstream from the cylinder.

Figure 7 shows that the extrapolation of the linear
fit of σr versus pi gives the critical value pic and the
corresponding critical flow rate Qc. This works well be-
cause the growing time scale of the instability diverges
when we approach the critical value, i.e., 1/σr → ∞
as pi → pic similarly to other experiments on the BvK
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Fig. 6. Typical wake velocity recording of the Bénard-von
Kármán instability, u(t)/usat, and the associated normalized
vacuum pressure, pi(t), for Re = 53.6, d = 3, dε = 0.5 mm.
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Fig. 7. Growth rates, σr, for the Bénard-von Kármán instabil-
ity versus the applied pressure, pi, for d = 3, dε = 0.5 mm. Best
linear fit extrapolated to 0, σr → 0, gives an accurate value of
the critical pressure, pic. Re = 53.6 (◦), 57.6 (×), 61.2 (4),
65.6 (�), 69.6 (5), 72.4 (�).

instability where the Reynolds number is the control pa-
rameter [13,3]. This method works fine for Reynolds num-
bers below 100, because as Re increases, the growth rate
become larger, and the condition τ � σ−1

r is no longer ful-
filled. For Reynolds numbers above 100 we are forced to
use an artificial threshold cutoff to determine the critical
parameters damping the BvK instability. At each Re the
cutoff is given by the rms background velocity fluctuation
level. So pic, Qc are found intersecting a local linear fit
of u(pi) with this cutoff. This method is less accurate but
also works well.

Figure 8 shows that the normalized critical pressure
grows linearly with the Reynolds number. Note that the
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Fig. 8. Critical pressure pic (po is atmospheric pressure) as a
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of Figure 7, for d = 3, dε = 0.5 (�) mm and the linear fit (full
line).
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d = 5, dε = 0.5 mm (4).

critical Reynolds number, Rec, for the BvK instability, can
be evaluated by taking the limit pic → 0. We computed
this limit by extrapolating a linear fit of Re versus pic for
the case d = 3, dε = 0.5 mm and we found Rec = 48.5
which is now the more widely accepted value for the crit-
ical Reynolds number [14]. For the other cases it has not
been possible to reach neither slower mean stream ve-
locities (case d = 5, dε = 0.5 mm) nor very small sink
flow rates (case d = 3, dε = 0.3 mm) to explore this
limit.

Figure 9 displays the evolution of the total critical
flow rate Qc as a function of the flow rate UodL which
seems to be the appropriate parameter to display the over-
all behavior of critical parameters for the three cases we
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Fig. 10. Ratio of free/forced (a) mean velocity profiles, U(zo, y)/U f(zo, y), (b) rms fluctuating velocity, ux(zo, y)/uf
x(zo, y),

behind the circular cylinder (x/d = 45.5, d/dε = 6, Q = 400 cm3/s) at Re = 66.4 (◦), Re = 74.3 (4), Re = 82.5 (�),
Re = 89.8 (?) and Re = 96.6 (.).

investigated (d = 3, dε = 0.3, 0.5 mm and d = 5,
dε = 0.5 mm). The critical flow rate, Qc, shows a slow
increase between Re = (50, 110) followed by an abrupt
increase at higher Re that tends to show that the inhibi-
tion of the BvK instability is more and more difficult to
achieve.

Figure 10a shows velocity profiles at different Reynolds
numbers. The total flow rate is fixed Q ∼ 400 cm3/s.
The mean velocity is systematically increased behind the
cylinder when suction is active. This is an indicator that

vortex shedding has ceased which is consistent with the
decrease of velocity fluctuations in Figure 10b.

5 Discussion

We performed smoke-wire visualizations to show the influ-
ence on the velocity field of a sink at the front stagnation
point of the cylinder. A smoke-wire generator is placed up-
stream from the cylinder (x/d > 10) intersecting a sheet
of laser light perpendicular to the cylinder axis.
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Slide 1 Slide 2

Fig. 11. Smoke-wire visualization of the stream lines upstream of a circular cylinder at Re = 200, d = 18, dε = 0.7 mm. When
the sink is on (slide 1) two stagnation points appear around the original one. The experimental angle, θo ∼ 160 ◦, agrees well
with the analytical estimation given by potential theory. When the sink is off (slide 2) the original stagnation point is recovered.

Figure 11 (Re = 200, d = 18, dε = 0.7 mm) illustrates
how the stream lines are deflected towards an active small
hole (sink). Two new stagnation points are formed sym-
metrically around the original one at θo ∼ 160 ◦ (slide 1,
q ∼ 18 cm3/s). The experimental angle agrees well with
the analytical estimation given by equation (1) (see be-
low). The stream lines when the sink is off are shown in
slide 2.

Figure 12a shows the effect of an active sink both on
the boundary layer separation point and on the width of
the cylinder wake (re-circulation region). Boundary layer
separation is shifted downstream when the sink is active
(slide 2) and one also observes a decrease of the width of
the wake (Re = 119, d = 8, dε = 0.5 mm).

Figure 12b shows a temporal sequence of three slides
displaying the entire flow field around the cylinder when
the strength of the sink is decreased (Re = 110, d = 18,
dε = 0.5 mm). We see a clear transition from a thin near
wake when the sink is active (slide 1) to a wider one when
the sink is off (slides 2 and 3).

The mechanism by which the vortex shedding is sup-
pressed is related to the bifurcation of the original stag-
nation point into two points located at angles ±θo around
cylinder axis. These new stagnation points appear as a
consequence of the deflected fluid path produced by the
active sink at ro. The flow field created around one of the
small holes at the cylinder surface can be modeled as a
sink, i.e. by a potential of the form φ = q/(4πr) where q
is the flow rate and r the radius from the hole center. A
very simple model of the flow past a cylinder can be drawn
from potential flow theory. If we superimpose the stream
functions of a uniform flow, Uo, with a dipole of strength
µd, we obtain the well-known overall flow around a circu-
lar cylinder. If we add a sink at the cylinder surface and a
source somewhere inside the cylinder in order to maintain
a constant value of the steam function on the cylinder, the

stream function in cylindrical coordinates becomes,

Ψ(r, θ) = Uor sin(θ)− µd

2πr
sin(θ) +

q1
2π
θ′ +

q2
2π
θ,

where a sink, q1, is placed at (r, θ) = (R, π), (tan θ′ =
y/(x + R)) and a source, q2, at r = 0. The cylinder ra-
dius, R, is given by R = [(µd/(2πUo)]1/2. The sink/source
strength ratio found to retain the cylindrical shape is
|q1/q2| = 2. A plot of the singular contour line, Ψ(r, θ) = 0,
shows that the initial stagnation point is shifted down-
stream symmetrically around θ = π (Fig. 13). Fluid par-
ticles coming from the left are pushed into the sink by
a force which is proportional to both the free stream ve-
locity, Uo and to the strength of the sink, q1. This force
vanishes precisely over the surface formed by the singular
contour line. The position θo of the new stagnation points
is determined through the pressure coefficient Cp(r, θ) =
2
(
p(θ)− po

)
/ρU2

o by the condition Cp(R, θ) = 1:

θo = ± cos−1

(
q1

8πRUo
− 1
)
. (1)

This shows that the original stagnation point at ro or
θ = π bifurcates into two symmetric points at ±θo. In the
limit q1 → 0, θo → π, the classical flow around the cylinder
is recovered. The singular stream line Ψ = 0 which passes
through these points, defines the boundary between fluid
particles being sucked and those passing around the sur-
face of the cylinder. At constant Uo, if the strength of
the sink increases, the new stagnation points move down-
stream. As the boundary layer starts now at ±θo, its sepa-
ration point is also shifted downstream, thus reducing the
size of the fluid loops behind the cylinder and inhibiting
the BvK instability.

Equation (1) gives the correct order of magnitude for
the shift of the stagnation point and potential flow theory
thus roughly describes what happens in the experiment.
The presence of a sink at the front end of a cylinder de-
flects the fluids paths creating an increased pressure field
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(a)

(b)

Fig. 12. (a) Smoke-wire visualization of the free and forced stream lines around a circular cylinder at Re = 110, d = 8,
dε = 0.5 mm. Slides 1 and 2 show the increased and reduced size of the re-circulation region behind the cylinder, and the
breaking point of the boundary layer, for the free and forced case respectively. The individual strength of the sinks, q, is about
10 cm3/s. (b) Smoke-wire visualization of the stream lines around a circular cylinder at Re = 110, d = 8, dε = 0.5 mm, in the
plane of a sink starting from a forced to free situation (slides 1→ 3). Note the reduced transverse size but increased longitudinal
size of the re-circulation region in the forced case (slide 1).

around the cylinder. This compresses the re-circulating re-
gion behind the cylinder thus inhibiting the Bénard von
Kármán instability and vortex shedding.

We know that a decrease of the width of the wake
is followed by an overall drag reduction over the body.
Indeed, the drag is approximately given by the integral of

the streamwise velocity fluctuations across the wake [15],

Fx ' −ρUo

∫∫
uxdydz.

In Figure 10 we have shown the ratio between free/forced
velocity profiles behind the circular cylinder. We can,
in principle, integrate numerically across the wake, for
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Fig. 13. Potential flow theory. Example of the stream func-
tion, Ψ(r, θ), for the flow around a circular cylinder with a
sink, q1 at (r, θ) = (R,π) and a source q2 at r = 0. Ψ(r, θ) =
Uor sin(θ) − µd

2πr sin(θ) + q1
2π θ
′ + q2

2π θ, where |q1/q2| = 2. The
two stagnation points at the cylinder surface deflect the fluid
particles increasing the pressure gradient downstream which
compresses the stream lines at the rear of the cylinder.

an unitary z step, to get approximately the percentage
of drag reduction for a fixed value of sink flow rate q.
We found a nearly constant 50 % drag reduction for
66 < Re < 96.6 due to a decrease of both the wake
width and velocity, when the sinks are active (Q ∼
400 cm3/s).

6 Conclusion

We have demonstrated an efficient method for control-
ling the Bénard-von Kármán instability in the wake of a
cylinder thus suppressing vortex shedding by decreasing
the pressure at the front stagnation point of the cylinder.
Vortex suppression has been observed over a wide range
of Reynolds numbers, 48.5 < Re < 150, thus improv-
ing previous methods used for controlling the wake of the
cylinder [5,9,16].

The physical mechanism is associated to the bifurca-
tion of the stagnation point into two points located sym-
metrically with respect to the flow centerline, and shifted
downstream as the suction is increased. Their presence
generates deflected fluid paths and an increased pressure
field at the cylinder surface. This shrinks the streamlines

in the near wake thus inhibiting vortex shedding. A cor-
responding drag reduction close to 50% is found for Re
between 60–100 in the case d/dε = 6.

By stopping the suction for a small enough duration in
the supercritical regime, we are able to trigger the emis-
sion of only one pair of vortices. This method of control
of the wake of a cylinder thus can be used to generate
localized vortical structures in a well-controlled way.

This work has been partly supported by contract ECOS
C98E04.
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